«« Vision Nurse »»


Contact Lenses History

In 1887, Adolf Fick was apparently the first to successfully fit contact lenses, which were made from brown glassLeonardo da Vinci is frequently credited with introducing the general principle of contact lenses in his 1508 Codex of the eye, Manual D, where he described a method of directly altering corneal power by submerging the eye in a bowl of water. Leonardo, however, did not suggest his idea be used for correcting vision — he was more interested in learning about the mechanisms of accommodation of the eye.

René Descartes proposed another idea in 1636, in which a glass tube filled with liquid is placed in direct contact with the cornea. The protruding end was to be composed of clear glass, shaped to correct vision; however the idea was unworkable, since it would make blinking impossible.

In 1801, while conducting experiments concerning the mechanisms of accommodation, scientist Thomas Young constructed a liquid-filled "eyecup" which could be considered a predecessor to the contact lens. On the eyecup's base, Young fitted a microscope eyepiece. However, like da Vinci's, Young's device was not intended to correct refraction errors.

Sir John Herschel, in a footnote of the 1845 edition of the Encyclopedia Metropolitana, posed two ideas for the visual correction: the first "a spherical capsule of glass filled with animal jelly", and "a mould of the cornea" which could be impressed on "some sort of transparent medium". Though Herschel reportedly never tested these ideas, they were both later advanced by several independent inventors such as Hungarian Dr. Dallos (1929), who perfected a method of making molds from living eyes. This enabled the manufacture of lenses that, for the first time, conformed to the actual shape of the eye.

It was not until 1887 that a German glassblower, F.E. Muller, produced the first eye covering to be seen through and tolerated.In the next year, the German physiologist Adolf Eugen Fick constructed and fitted the first successful contact lens. While working in Zürich, he described fabricating afocal scleral contact shells, which rested on the less sensitive rim of tissue around the cornea, and experimentally fitting them: initially on rabbits, then on himself, and lastly on a small group of volunteers. These lenses were made from heavy brown glass and were 18–21mm in diameter. Fick filled the empty space between cornea/callosity and glass with a grape sugar solution. He published his work, "Contactbrille", in the journal Archiv für Augenheilkunde in March 1888.

Fick's lens was large, unwieldy, and could only be worn for a few hours at a time. August Müller in Kiel, Germany, corrected his own severe myopia with a more convenient glass-blown scleral contact lens of his own manufacture in 1888.

Glass-blown scleral lenses remained the only form of contact lens until the 1930s when polymethyl methacrylate (PMMA or Perspex/Plexiglas) was developed, allowing plastic scleral lenses to be manufactured for the first time. In 1936 an optometrist, William Feinbloom introduced plastic lenses, making them lighter and more convenient. These lenses were a combination of glass and plastic.

In the 1950s, the first "corneal" lenses were developed — these were much smaller than the original scleral lenses, as they sat only on the cornea rather than across all of the visible ocular surface. PMMA corneal lenses became the first contact lenses to have mass appeal through the 1960s, as lens designs became more sophisticated with improving manufacturing (lathe) technology.

One important disadvantage of PMMA lenses is that no oxygen is transmitted through the lens to the cornea, which can cause a number of adverse clinical effects. By the end of the 1970s, and through the 1980s and 1990s, a range of oxygen-permeable but rigid materials were developed to overcome this problem. Collectively, these polymers are referred to as "rigid gas permeable" or "RGP" materials or lenses. Although all the above lens types — sclerals, PMMA lenses and RGPs — could be correctly referred to as being "hard" or "rigid," the term hard is now used to refer to the original PMMA lenses which are still occasionally fitted and worn, whereas rigid is a generic term which can be used for all these lens types. That is, hard lenses (PMMA lenses) are a sub-set of rigid lenses. Occasionally, the term "gas permeable" is used to describe RGP lenses, but this is potentially misleading, as soft lenses are also gas permeable in that they allow oxygen to move through the lens to the ocular surface.

The principal breakthrough in soft lenses was made by the Czech chemist Otto Wichterle who published his work "Hydrophilic gels for biological use" in the journal Nature in 1959.This led to the launch of the first soft (hydrogel) lenses in some countries in the 1960s and the first approval of the 'Soflens' material by the United States Food and Drug Administration (FDA) in 1971. These lenses were soon prescribed more often than rigid lenses, mainly due to the immediate comfort of soft lenses; by comparison, rigid lenses require a period of adaptation before full comfort is achieved. The polymers from which soft lenses are manufactured improved over the next 25 years, primarily in terms of increasing the oxygen permeability by varying the ingredients making up the polymers.

In 1999, an important development was the launch of the first silicone hydrogels onto the market. These new materials encapsulated the benefits of silicone — which has extremely high oxygen permeability — with the comfort and clinical performance of the conventional hydrogels which had been used for the previous 30 years. These lenses were initially advocated primarily for extended (overnight) wear although more recently, daily (no overnight) wear silicone hydrogels have been launched.